
Swarthmore College
E27: Computer Vision

Final Project: Attempted Implementation of an Extension of
AprilTag Tracking

May 5, 2023

Quentin Adolphe
Cole Smith

Background:

For his engineering design project, Cole performed biomechanics research investigating

the movement of the thumb-tip throughout 3D space in a computer model. With future work on

his project looking to validate this in real life, part of the analysis will involve recording the

movement of a thumb and determining joint angles using motion capture techniques. As we

learned about motion tracking in the latter half of the course, that made us wonder how computer

vision techniques could be leveraged to attempt to streamline the analysis process. Using stereo

depth and triangulation, we wondered if we might be able to develop a method to record the

video of a limb moving in 3D space and run it through an algorithm to detect points of interest

and determine the angle between them over time. With this framework in mind, the goal of our

final project was to use triangulation to measure joint angles over time for videos shot on

synchronized cameras. We hoped to start with larger angles, such as the elbow, to validate that

our code runs successfully and can be applied to any movement with 3 points to track.

To carry out our analysis we specifically sought to easily track 3 distinct points in 3D

space. Having first wanted to use template tracking with different colored points, we quickly

shifted to AprilTag tracking from the advice of Professor Phillips. Usually seen in applications in

robotics, AprilTags, as shown in Figure 1, are unique visual tags that aid in several computer

vision properties such as object tracking, creating a visual reference system for robots to know

where they are in the field, camera calibration, and more. Sensors and cameras can identify

AprilTags via the use of an AprilTag detection software that is importable in Python that easily

calculates the position, orientation, and identity of the tag relative to the camera position. The

simple, unique structure of these allows the user to detect and process them very quickly.

Figure 1: Example AprilTags

Understanding the framework of AprilTags, we wanted to see if we could use them as our

3D points to track. We hoped using an algorithm to follow the AprilTags would help us

streamline the process of finding the points to track instead of performing template matching.

With that in mind, we set out to create our workflow, calibrating our cameras before recording

elbow flexion activities with AprilTags attached and calculating the change in angle over time

with the hope of comparing results to a known motion tracking program if we obtained strong

results. The following sections follow the process of the development of our program, the results

we obtained, and how we could have improved it had we had more time.

Theory:

Object Tracking:

Object tracking is a lucrative but difficult field in computer science. For this project, it

was best to implement an existing algorithm rather than starting from scratch or using a less

versatile method of object detection such as template matching. Opting to use OpenCV’s KCF

tracker to follow objects of interest in real-time came with a few key advantages. KCF tracking

is both a very fast and highly accurate tracking method, while only struggling when the object it

is following becomes obstructed [1]. The videos used for this project had clear and unobstructed

views of the objects of interest, so this fast and accurate algorithm was the ideal choice.

Camera calibration:

Camera calibration is a method that allows us to account for and correct any distortion

caused by the cameras by determining the intrinsic and extrinsic properties of the camera and

using them to correct any distortion. Pinhole cameras can distort images when they take a

picture. This distortion can cause straight lines to appear curved (radial distortion), and the

phenomenon worsens the further from the center of the image the line is. Another type of

distortion causes some areas in an image to appear closer than expected (tangential distortion) as

a result of the image-taking lens not being parallel to the plane of the image being taken [2]. To

perform camera calibration you need to extract parameters known as distortion coefficients, as

well as the intrinsic and extrinsic which are specific to each camera and include information

including the focal length, optical center, and rotational and translational matrices. For our

application of triangulation and stereo depth, we are seeking to extract these values and correct

the distortion that occurs. Using an image of a chessboard-like grid, we can perform the

calibration using the images with OpenCV’s calibrateCamera() function [2]. This gives us the

parameters we are looking to extract from 3D object points and their associated 2D image points

for each frame in a video. These points are associated with the corners of the boxes on the

chessboard and allow for easy determination of the 3D and 2D points using a corner detection

algorithm. Once we have the distortion parameters and intrinsic values for the cameras, and

extrinsic values of the stereo setup, we can use them in further analysis such as triangulation or

removing the distortion from the image.

Triangulation:

Triangulation is a critical component of scene reconstruction as you look to use the

projections of a shared point from 2 images to determine the location of that point in 3D space.

Using two calibrated cameras in the same scene, the camera matrices (both intrinsic and

extrinsic), and the corresponding points, several methods can be used to compute the 3D

coordinates of the corresponding point. Common practice involves using an error-minimizing

ordinary least squares method to solve for the shared points. Depending on the method

employed, this error that is being minimized could be algebraic or geometric. For this project, we

used a direct linear transform (DLT) function [3]. This function takes in the 2D points as a single

vector and associated projection matrices as another input vector to output a2 × 𝑛 3 × 𝑛

vector of the computed 3D points using a DLT. This solves the matrix equation for𝐴𝑥 = 𝑤

unknowns such that is minimized with a least squares calculation [4]. For our project, the𝑥 𝑤

DLT function outputs the vector x as the calculated 3D points.

Methods and Approach:

Originally, the project was intended to have four main components: (1) recording a video

of a limb from two perspectives with two phones, (2) implementing template matching to track

three points with one camera, (3) using stereo calibration and triangulation to determine the

location of each point in the 3D world, and finally (4) plotting the points in a video format with

accompanying joint angles over time. Though this plan was mainly followed, KCF object

tracking using OpenCV’s legacy algorithms ended up being far more effective at locating objects

of interest than template matching. Template matching has its uses, but it is far too limited and

inaccurate for the real-time tracking required for this project.

A critical step in the process of finding 3D locations of objects is to first find their 2D

locations in the camera planes. Though AprilTags are extremely versatile and an excellent way of

locating objects, their full functionality was not used in this project. Instead, they were used

simply as high contrast and easily identifiable cues for OpenCV’s KCF tracking algorithm to

lock onto. Opting for a tracking algorithm instead of the AprilTags’ built-in functionality allows

this project to be used for a wider range of objects. Thus, time was sacrificed in implementing a

separate algorithm in return for more versatility in object tracking.

The next step was to calibrate the stereo setup. First, both cameras must be calibrated to

find their intrinsic parameters. The cameras were set in their stereo positions and began

recording. A distinctive clap was performed in front of both cameras to ensure that the videos

were synchronized. Then, a chessboard-like grid was waved in front of their view as they

recorded. The algorithm implemented uses OpenCV functions to find the locations of the

chessboard in each frame for the videos. These chessboards allow both the intrinsic properties of

the cameras and the extrinsic properties of the stereo environment to be derived. Finally, after

collecting all the 2D points from the objects of interest and the parameters for both of the

cameras, the 3D triangulated points can be derived with a DLT.

Results and Discussion:

The implementation of OpenCV’s KCF tracking algorithm was successful. Simply

highlighting the regions of interest on both videos when prompted allows for nearly any object in

a scene to be tracked. As seen in Figure 2, three AprilTags to serve as tracking points for the

KCF algorithm are placed on an arm. Selecting the same regions of interest from both the left

and right cameras allowed for 2D location data to be collected for each frame of the videos.

Figure 2 (a): Three points of interest in red being tracked by left camera

Figure 2 (a): Three points of interest in red being tracked by right camera

After successfully implementing the tracking algorithm, the cameras and stereo setup had

to be calibrated. The intrinsic matrices computed for the left camera (iPhone 13 Pro) and right

camera (iPhone 13 mini) along with extrinsic parameters for the stereo setup can be seen below.

 1661. 49, 0, 990. 275 []

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟 𝑙𝑒𝑓𝑡 𝑐𝑎𝑚𝑒𝑟𝑎 = 0, 1674. 68, 483. 835[]

 0, 0, 1[]

 1635. 05, 0, 1010. 56 []

𝐼𝑛𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑚𝑎𝑡𝑟𝑖𝑥 𝑓𝑜𝑟 𝑟𝑖𝑔ℎ𝑡 𝑐𝑎𝑚𝑒𝑟𝑎 = 0, 1656. 91, 422. 097[]

 0, 0, 1[]

 . 224832, − 0. 0170742, 0. 974396 []

𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 𝑚𝑎𝑡𝑟𝑖𝑥: 𝑅 = 0. 0167305, 0. 999858, − 0. 0210836[]

 − 0. 974254, 0. 0167761, 0. 224829[]

− 62. 7286 []

𝐸𝑥𝑡𝑟𝑖𝑛𝑠𝑖𝑐 𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 𝑣𝑒𝑐𝑡𝑜𝑟: 𝑇 = 1. 74351[]

46. 1935[]

Both cameras recorded a 1080 pixel * 1920 pixel video (9:16 aspect ratio). This means

the expected offsets u0 and v0 for both cameras would be:

𝑢
0
 = 1920 / 2 = 960

𝑣
0
 = 1080 / 2 = 540

This yields a percent difference of 3.10% between expected and calculated values for u0

in the left camera and a 5.13% difference in the right camera. The calibration also yielded a

percent difference of 11.0% between expected and calculated values for v0 in the left camera, and

a 13.6% difference in the right camera. Though the calculated values for u0 had a relatively small

percent difference, the large errors in the v0 values were a cause for concern. It is difficult to

calculate focal lengths for modern cell phones, but the relative consistency between the fx and fy

values for the two phones was confidence-inspiring. There was only a 1.60% difference between

the calculated fx values and a 1.06% difference between the calculated fy values. The calibration

of each camera was mostly successful, but the large differences previously discussed may be the

cause of inaccuracies in computation later in the project. These inaccuracies could have come

from the cameras being bumped or slightly moved, or not perfectly synced.

Unfortunately, the 3D triangulation proved to be only marginally successful. As seen in

Figure 3, the real-world points (Figure 3a) correspond reasonably well with the points calculated

with the triangulation algorithm (Figure 3b). The points of interest are in a straight line in the real

world, and come out in a straight line when triangulated.

Figure 3 (a): Three points of interest in red being tracked

Figure 3 (b): The same three points of interest triangulated

In Figure 4, the real-world points (Figure 4a) do not correspond well with the points

calculated with the triangulation algorithm (Figure 4b). The points of interest are at a 90o angle in

the real world, but come out only at a slight angle when triangulated. Comparing Figure 3b with

Figure 4b, the relative angle between the three points is very similar, but the points are closer

together in Figure 4b. The algorithm does recognize the changing distances between the three

points, but it does not do so with high accuracy.

Figure 4 (a): Three points of interest in red being tracked

Figure 4 (b): The same three points of interest triangulated unsuccessfully

In an attempt to debug the code, the experiment was repeated with a different dataset and

different stereo setup, but inaccuracies still arise as seen in Figure 5. With this dataset, two fixed

points were chosen while the third tracked the moving face. The triangulated outcome had the

general layout of the three points correct, but their specific positions were still inaccurate. In

Figure 5 (a), there was one point being tracked in front of two fixed points in the background.

But as seen in Figure 5 (b), the triangulated point of the face was put behind the two fixed points.

Figure 5 (a): Three points of interest in red being tracked

Figure 5 (b): The same three points of interest triangulated unsuccessfully

The algorithm successfully calculated the relative position between the two fixed points

but unsuccessfully calculated the position of the face in the foreground. The cause of the

incorrect mapping was unclear, but most likely arose from poor camera or stereo calibration. The

differences between expected and computed intrinsic parameters were sufficiently large to cause

errors in 3D triangulation.

Conclusion:

Although the triangulation of points did not come out as expected, there were many

successes throughout this project. It is difficult to ascertain the reasoning behind the failed

triangulation, but it can probably be solved through more experimentation with different scenes

and stereo setups. Though this 3D location algorithm is not suitable for real-world applications

as it stands, with some polishing it may be a useful tool. From utilizing cameras on cars to

analyze the world around them, to a simple cell phone application that uses multiple cameras to

detect depth in an environment, stereo vision has many useful applications for everyday life.

Future work could be done on this model for live-action triangulation and tracking, and making

improvements on the triangulation of the AprilTags to achieve its desired goal in real-time. With

regard to the original purpose of streamlining joint angle calculations, further, correct

implementation of this algorithm could potentially allow researchers to obtain results for motion

tracking using AprilTags in real-time, and reduce the need to rely on purchasing expensive

cameras or software for analysis of motion capture data. This could make many studies

repeatable at a lower cost to the researcher.

References

[1] “Object Tracking using OpenCV (C++/Python) |,” Feb. 13, 2017.

https://learnopencv.com/object-tracking-using-opencv-cpp-python/

[2] OpenCV, “OpenCV: Camera Calibration,” docs.opencv.org.

https://docs.opencv.org/4.x/dc/dbb/tutorial_py_calibration.html

[3] T. Batpurev, “Stereo Camera Calibration and Triangulation with OpenCV and Python,”

Temuge’s webpage, Feb. 02, 2021.

https://temugeb.github.io/opencv/python/2021/02/02/stereo-camera-calibration-and-triangulation

.html (accessed May 06, 2023).

[4] “LOST in Triangulation,” GTSAM, Feb. 04, 2023.

https://gtsam.org/2023/02/04/lost-triangulation.html#:~:text=A%20commonly%20used%20meth

od%20for (accessed May 06, 2023).

‌

Appendices

Project Folder:

https://drive.google.com/drive/folders/1DxS4_k7FUn2e3M8ocawICIJVgklwRztY?usp=sharing

Final video of arm scene:

https://drive.google.com/file/d/1jnC2WqPSlvvJOwdXcxDVNSEYBTsiPwS4/view?usp=share_li

nk

Final video of room scene:

https://drive.google.com/file/d/1jhRVoLh8s1WOcW9IvLMCUVJbYO9n7KiT/view?usp=share_l

ink

"""

Created on Wed Apr 26 15:01:20 2023

@author: quentinadolphe

Description: User must have a total of 4 videos to effectively use the

script below. 2 videos for calibration and 2 videos for

tracking/triangulation. Calibration information for videos I have used is

hardcoded in. If calibration wants to be done, delete mtx1, mtx2, R and T,

and uncomment the ster_calibrate() function call. It is best to run this in

some IDE like Spyder, so the graphs can be outputted to the console.

Replace current video names with desired videos and code should run fine.

Code taken from other sources cited below with links.

"""

import numpy as np

import cv2

import matplotlib.pyplot as plt

from scipy import linalg

from mpl_toolkits.mplot3d import Axes3D

###

https://www.instructables.com/Object-Tracking-With-Opencv-and-Python-With-J

ust-5/

def get_points(video):

cap=cv2.VideoCapture(video)

vid = []

success, img = cap.read()

bboxes = []

tracked = 3

points = [[] for i in range(tracked)]

for i in range(tracked):

bboxes.append(cv2.selectROI("Multi-tracker {}".format(i+1)

,img,False))

###

https://learnopencv.com/multitracker-multiple-object-tracking-using-opencv-

c-python/

Create MultiTracker object

multiTracker = cv2.legacy.MultiTracker_create()

Initialize MultiTracker

for bbox in bboxes:

multiTracker.add(cv2.legacy.TrackerKCF_create(), img, bbox)

while cap.isOpened():

success, frame = cap.read()

if not success:

break

get updated location of objects in subsequent frames

success, boxes = multiTracker.update(frame)

draw tracked objects

for i, newbox in enumerate(boxes):

p1 = (int(newbox[0]), int(newbox[1]))

p2 = (int(newbox[0] + newbox[2]), int(newbox[1] + newbox[3]))

cv2.rectangle(frame, p1, p2, (225,225,0), 2, 1)

#draw centroid

pc = (int((p1[0] + p2[0])/2), int((p1[1] + p2[1])/2))

points[i % tracked].append(pc)

frame = cv2.circle(frame, pc , 3, (0,0,255), 3)

show frame

cv2.imshow('MultiTracker', frame)

quit on ESC button

if cv2.waitKey(1) & 0xFF == 27: # Esc pressed

break

cap.release()

cv2.destroyAllWindows()

return [np.array(points[0]), np.array(points[1]), np.array(points[2])]

def cam_calibrate(vid1, vid2):

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30,

0.001)

prepare object points, like (0,0,0), (1,0,0), (2,0,0),(6,5,0)

objp = np.zeros((6*7,3), np.float32)

objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)

Arrays to store object points and image points from all the images.

objpoints = [] # 3d point in real world space

imgpoints_left = [] # 2d points in image plane.

imgpoints_right = []

cap = cv2.VideoCapture(vid1)

dap = cv2.VideoCapture(vid2)

found = 0

while(found < 240): # Here, 10 can be changed to whatever number you

like to choose

ret, img1 = cap.read() # Capture frame-by-frame

ret, img2 = dap.read() # Capture frame-by-frame

gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)

gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)

Find the chess board corners

ret1, corners1 = cv2.findChessboardCorners(gray1, (7,6),None)

ret2, corners2 = cv2.findChessboardCorners(gray2, (7,6),None)

If found, add object points, image points (after refining them)

if ret1 == True and ret2 == True:

corners1 = cv2.cornerSubPix(gray1, corners1, (11, 11), (-1,

-1), criteria)

corners2 = cv2.cornerSubPix(gray2, corners2, (11, 11), (-1,

-1), criteria)

cv2.drawChessboardCorners(img1, (5,8), corners1, ret1)

cv2.drawChessboardCorners(img2, (5,8), corners2, ret2)

objpoints.append(objp)

imgpoints_left.append(corners1)

imgpoints_right.append(corners2)

found += 1

cv2.imshow('img', img1)

cv2.imshow('img2', img2)

k = cv2.waitKey(500)

When everything done, release the capture

h, w, _ = img1.shape

print(h)

print(w)

cap.release()

cv2.destroyAllWindows()

ret, mtx1, dist1, rvecs, tvecs = cv2.calibrateCamera(objpoints,

imgpoints_left, gray1.shape[::-1], None, None)

ret, mtx2, dist2, rvecs, tvecs = cv2.calibrateCamera(objpoints,

imgpoints_right, gray2.shape[::-1], None, None)

return mtx1, dist1, mtx2, dist2, imgpoints_left, imgpoints_right,

objpoints, h, w

def ster_calibrate(vid1, vid2):

mtx1, dist1, mtx2, dist2, imgpoints_left, imgpoints_right, objpoints,

height, width = cam_calibrate(vid1, vid2)

criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 100,

0.001)

stereocalibration_flags = cv2.CALIB_FIX_INTRINSIC

ret, CM1, dist11, CM2, dist22, R, T, E, F =

cv2.stereoCalibrate(objpoints, imgpoints_left, imgpoints_right, mtx1,

dist1,

mtx2,

dist2, (width, height), criteria = criteria, flags =

stereocalibration_flags)

print(ret)

return R, T, mtx1, dist1, mtx2, dist2

###

https://temugeb.github.io/opencv/python/2021/02/02/stereo-camera-calibratio

n-and-triangulation.html

def DLT(P1, P2, point1, point2):

A = [point1[1]*P1[2,:] - P1[1,:],

P1[0,:] - point1[0]*P1[2,:],

point2[1]*P2[2,:] - P2[1,:],

P2[0,:] - point2[0]*P2[2,:]

]

A = np.array(A).reshape((4,4))

B = A.transpose() @ A

U, s, Vh = linalg.svd(B, full_matrices = False)

print('Triangulated point: ')

print(Vh[3,0:3]/Vh[3,3])

return Vh[3,0:3]/Vh[3,3]

#%%

'''

camera and stereo calibration

R, T, mtx1, dist1, mtx2, dist2 = ster_calibrate("leftcalib.mp4",

"rightcalib.mp4")

calibration is complete so this no longer has to be run'''

#%%

mtx1 = np.array([[1661.49, 0, 990.275],

[0, 1674.68, 483.835],

[0,0,1]])

mtx2 = np.array([[1635.05, 0, 1010.56],

[0, 1656.91, 422.097],

[0,0,1]])

R = np.array([[.224832, -0.0170742, 0.974396],

[0.0167305, 0.999858, -0.0210836],

[-0.974254, 0.0167761, 0.224829]])

T = np.array([[-62.7286],

[1.74351],

[46.1935]])

#%%

triangulation

#RT matrix for C1 is identity.

RT1 = np.concatenate([np.eye(3), [[0],[0],[0]]], axis = -1)

P1 = mtx1 @ RT1 #projection matrix for C1

#RT matrix for C2 is the R and T obtained from stereo calibration.

RT2 = np.concatenate([R, T], axis = -1)

P2 = mtx2 @ RT2 #projection matrix for C2

#%%

Get points from stereo pair

points1 = get_points("lefttags.mp4")

#%%

points2 = get_points("righttags.mp4")

#%%

#i = 480 # delete for loop below and set i to any value to see desired

moment in time

for i in range(0,800,3):

p3ds = []

for j in range(len(points1)): #tags

_p3d = DLT(P1, P2, points1[j][i], points2[j][i])

p3ds.append(_p3d)

p3ds = np.array(p3ds)

p3ds = np.transpose(p3ds)

fig = plt.figure()

ax = fig.add_subplot(111, projection='3d')

ax.set_xlim3d(-10, 30)

ax.set_ylim3d(-20, 30)

ax.set_zlim3d(30, 80)

ax.set_xlabel('X axis')

ax.set_ylabel('Y axis')

ax.set_zlabel('Z axis')

ax.plot(p3ds[0], p3ds[1], p3ds[2])

ax.scatter3D(p3ds[0], p3ds[1], p3ds[2], 'red')

plt.show()

